STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY

SEAC-2212/CR-268/TC-2 Environment department, Room No. 217, 2nd floor, Mantralaya Annexe, Mumbai- 400 032. Date: 3rd December, 2016.

To. M/s. Blue Circle Organics Pvt. Ltd. Plot No. B-12, C-4, E-2, Industrial Area, Chemical Zone, Ambernath (W)- 421 501.

EC SERAA- 2tem No. 24, Meeting No. 103 Subject: Environment clearance for proposed Expansion Existing: 447.5 MT/M to Proposed

1626.8 MT/M at plot B-12, C-4, E-2, Ambarnath MIDC, Ambarnath, Tal & Dist. Thane by M/s. Blue Circle Organics Pvt. Ltd.

Sir.

This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification, 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 125th meeting and decided to recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 103rd meeting.

It is noted that the proposal is considered by SEAC-I under screening category 5(f) B1 as per EIA Notification 2006.

Brief Information of the project submitted by Project Proponent is as-

1	Name of the project	Blue Circle Organics Private Limited
2	Name, address, e- mail & contact number of proponent	Dr. P. C. Shekar Chief Executive Officer Plot No. B-12, C-4, E-2, MIDC Industrial Area, Ambernath- 421501 pcshekar@bluecircle.net.in Mob: 9821029547
3	Name of Consultant	Sadekar Enviro Engineers Pvt. Ltd.
4	Accreditation of Consultant (NABET accreditation)	NABET RAAC Meeting :- 71st /2015, 2nd Dec.2015
5	New Project/Expansion in existing project /Diversification in existing project	Expansion

6	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table)	No					
7	Activity schedule in the EIA notification	Schedule 5(f)	, catego	ry B1			
			Existin	ıg	Propo	sed	Total
	Area Details	Total Builtup area	3381.8	78 m ²	7591.	456 m ²	10973.3 m
8		Open Area	20960.	.62 m ²	12523	.9 m ²	12523.9 m
0		Green Belt	5234.2	02 m ²	188.0	m ²	5422.3 m ²
		Parking area	3286.3	3286.30 m ²		m ²	3943.5 m ²
		Area of the plot	32863.	32863.0 m ²			32863.0 m
9	Name of Notified Industrial area/ MIDC	Ambernath M	IIDC, D	ist.: Thane			
10	TOR given by SEAC?	Yes, The TOI & 31 st Octobe			3 rd SEA	C-I Meeting	g dated 30 th
11	Estimated cost of the project: (Including cost for land, building, plant	Sr Compo		Existing		Proposed	Total
	and machinery separately)	1. Project	Cost	16.56 Cr.		28.84 Cr.	45.40 Cr.

		Lat	itude	18°52'44.	22"N					
1	Location details of the	Lo	ngitude	73°10'43.00"E						
2		Lo	cation	Amberna	th MIDC					
~	project	Ele	vation above Mean	17						
		Sea	Level(meters)							
1 3	Distance from protected area/ critically polluted area/ Eco sensitive area/ Interstate boundary	Company is located in Notified Industrial Area, Ambernath.								
		Active Pharmaceutical Ingredients								
1 4	Production profile (MT / Month):		Name of Products		Existin g in	Propose d in	Total in			
		1	Sulfasalazine			8.0	8.0			
		2	Hydrochlorothiazide		5.0		5.0			

1				
3	Diatrizoic Acid	10.0		10.0
4	Iohexol	5.0		5.0
5	Iopamidol	4.0		4.0
6	Iothalamic Acid	4.0		4.0
7	Sucralose	2.0		2.0
8	Metformin Hydrochloride		167.0	167.0
9	Amlodipine Besylate		3.0	3.0
	Saccharin & its Salts		250.0	250.0
0			250.0	250.0
1	Docusate Sodium, its salts and		67.0	67.0
1 1	suspension		07.0	07.0
Vet	erinary Products	<u> </u>		
	Name of Products	Existin	Propose	Total
 		g in	d in	in
1	Albendazole	2.0		2.0
2	Chlorpheniramine	2.0		2.0
3	Rafoxanide BP (VET)	2.0		2.0
4	Levamisole Hydrochloride IP	2.0		2.0
Isop	hthalic & Derivatives			
<u> </u>				
	Name of Products	Existin	Propose	Total
		gin	d in	in
1	5-Nitroisophthalic Acid	100.0	100.0	200.0
2	5-Nitroisophthalic Acid	90.0	60	150.0
	Dimethyl Ester			
3	5-Nitroisophthalic Acid	20.0		20.0
-	Monomethyl Ester			
4	5-Aminoisophthalic Acid	5.0		5.0
5	5-Amino-2,4,6-	20.0		20.0
	TriIodoisophthalic Acid	ļ		
6	Sodium-5-Nitroisophthalic	5.0		5.0
7	Acid Monomethyl Ester			ļ
7	5-Hydroxy Isophthalic Acid	40.0		40.0
8	5- Nitro-N-Methyl	20.0		20.0
<u></u>	isopthalamic acid			
9	1,4,7,10tetraazacyclododecane		6.0	6.0
	-1,4,5,10-tetraacetic acid			
10	(DOTA)		000	L
10	5-Amino-2,4-6- triiodoisophthalic acid		20.0	20.0
	Dichloride			
11			100	10.0
11	5-Amino-N,N'-bis(2,3 dihydroxypropyl) 2,4,6-		10.0	10.0
	Triiodoisophthalamide			
12	5-Acetylamino-N,N'-bis(2,3		10.0	10.0
12	dihydroxypropyl)-2,4,6-		10.0	10.0
	Triiodoisophthalamide			
13	5-Amino N,N'-Bis(2,3-		1500	150.0
12	J-1 MIIIIO 14,14 "DIS(2,3-		150.0	150.0

	-	14	phthalam [ABA.H (+)-O,O' tartaric a agents	Cl] -Di-p-Toluoyl-D- cid salts; resolving		3.3	3.3
		Sulfo	nyi Amia	es & Chlorides			
			Name of	Products	Existin g in	Propose d in	Total in
		1	2-Amino	benzesulfonamide	1.0		1.0
		2	4- Carboxy	benzenesulfonamide	0.5		0.5
		3	5-Chlore Disulfon	oaniline-2,4- amide	30.0		30.0
		Other	Products				
			Name of	Products	Existing in	Propose d in	Total in
		1	2-Amino (Serinol)	p-1,3-Propanediol	20.0		20.0
		2	3-Amino (Isoserin	o-1,2-Propanediol	45.0	50.0	95.0
		3	3-(Methy	ylamino)-1,2- diol	8.0		8.0
		4	4-Sulfob Potassiu	enzoic Acid m Salt	3.0	w pr	3.0
		5		phthalide	2.0	40 24 20	2.0
		6	Methyl A	Anthranilate		250.0	250.0
		7	` •	l amino)benzoic acid hylamino)propane-2-	i	5.0	5.0
		8		henoxyamine		5.0	5.0
		Inorg	anic Cher				
			Name of	Products	Existing	Propose d	Total in
		1.	Copper S	Salts	_	10.0	10.0
				R & D Products	pro va no	5.0	5.0
				Total (MT/M)	447.5	1179.3	1626. 8
		Ву	Products				
1	By Products	Sr. No			Existing MT/M	Proposed MT/M	Total MT/M
5	(MT/M)	Spent Mix Solvents		Mix Solvents	0.0	84.0	84.0
		2.	Spent	Sulphuric Acid	129.0	129.0	258.0

		3.	Sodium Salts		45.0	74.1	119.1					
			Total		174	287.1	461.1					
6	The state of the s	KWHt	f the Ground w ank is located a	t West side o	-7 m Bgl							
1 7	Total Water Requirement	Domestic: 10 CMD Processes: 164.43 CMD Cooling Tower: 327.61 Boiler: 180 CMD Gardening: 27.5 CMD										
1 8	Storm water drainage	Natural is provio	Natural water drainage pattern: - Appropriate Drainage water system is provided. Quantity of storm water: -									
1 9	Sewage generation and Treatment	Existing: Quantity of Sewage generation: 4.8 CMD Treatment scheme: Septic tank followed by soak pit After Expansion: Quantity of Sewage generation: 8.0 CMD Treatment scheme: Outlet will be connected to aeration tank										
2	Characters of effluent	Paramers (pH, BOD, COD, etc) pH		Inlet effluent Character i-stic (LCOD) 4.9 2089	Outlet effluent Characterist ic 6.5 – 7.5 Less than	Effluer Discha	nt rge rds /MPC					
		COD BOD	41132.4 11807.65	3785 1261	Less than 250 Less than 30	250 mg						
		Amount o Amount o Amount o Membersh submit the ** As per can be disc only 25.67 278.73 CM	parameters are expansion) f effluent gener f treated effluer f water send to hip of the CETP letter: Yes, M existing consent charged to CET CMD treated effluent 1 within the plant,	ration (CMD) at recycled (of the CETP (C) (If require): ember of CI to operate to to operate of the CETP, but currents of the CI to	CMD): 278.73 CMI CMD): 150.5 CMD): 92.7 CM If yes then attain the first the company in the compa	CMD MD** tach the let rali CETP treated eff s discharg pansion, ou	ter fluent ing it of					

			onal e					n CETP for nerated after			
2 2	Note on ETP technology to be used	High of the 21.38 tower feed t efflue two s utilized MEE Low second After	COD/ MEE CMD make ank, vent (M tage R ed in r COD:	- 125 C of cond- up, while where it v IEE Cond O for fun number of stream treatertiary to nent it wi	ean Men e r wil der r th of a	n + RO D. sate from emaining I get min nsate + her treatm activities ted with	m MEE was MEE con with blowdown ment. The same, Reject for full-fledger	I be send to ill be utilize ondensate we wdown efforth o will get permeate forth com RO with red ETP with	ed f vill luer pass rom ll be	for Co be sen nts. Th sed thr i RO v e sent	oling at to RO ae mix rough will get to the
2 3	Disposal of the ETP sludge (if applicable)	Dispo	osal to	f sludge: CHWTS				Existing +	Pro	posed	1)
2 4	Solid waste Management	Exist Sr. no 1 2 3 Tota Sr no 1 2 3 4	ETP Resi Was Ash fired I After	Sludge due & te from coa l boiler r Expans ce Sludge lue & e lue from fired	(° 4	Qty (TPM) 3.39 0.96 0.86 n Qty TPM) 5.77 4.86 450.0	etc.) Dry Dry Form	ge/Dry/slurry	Sc Sl	Solid Sludg Solid Solid ompos olid udge olid	ge
2 5	Stack emission Details: (All the stacks attached to process units, Boilers,Boilers,captive power plant, D.G.Sets, Incinerator both for existing and	& U	tion Jnits ler (k No.	fro gr		Internal diamete r (top) (m)	Existing/d d Existing	Pro	pose	Temp. of exhaus t (°C)

	proposedactivity).	Hr)												
	Please indicate the	Bo	iler	1	2	35		1.14	5 Pro	osed	130				
	specific section to	(8									150				
	which the stack is	M	[/Hr)												
	attached.e.g.: Process	Scr	ubbe			3 m	tr	0.6	Exis	ting	32				
	section, D.G.Set, Boiler,	r				abo	ve		'	J					
	Power Plant, incinerator			Ī		Bui	ldin				į				
	etc. Emission rate			\perp		g ht	•								
	(kg/hr.) for each	Scr	Scrubbe 2		2	2.5	mtr	0.3	Exis	ting	32				
	pollutant (SPM, SO ₂ , NO _x etc. should be	r				abo				_					
	specified					Buil									
ŧ.	specified	<u> </u>		4		g ht									
		11	ubbe	3		2.5		0.6	Exis	ting	32				
		r				abor									
						Buil									
		-	.1.1	1	***	g ht.									
		11	ubbe	4		2.5 1		0.2	Exis	ting	32				
		r				abov									
						Buil									
		Seri	ubbe	5		g ht. 4 mt	-	0.5	n	1					
	f	r	4000			abov		0.5	Prop	osea	32				
										Buil					
						g ht.		ĺ							
		Scri	ıbbe	6		4 mt		1.1	Prop	nced	32				
		r				abov		1	, rop	J304	1 32				
						Buile									
						g ht.									
		Scrubbe		Scrubbe 7		4 mt	r	1.1	Propo	osed	32				
		r				abov	e		1						
		:				Build	in				1				
	-		_			g ht.									
		DG	Set	1		14.47	7	0.15	Propo	sed	142				
						mtr									
						abov	- 1								
						Build	lin								
						g ht.									
		Sr.	Fuel	ł	I	•		ption	Calorific						
		No.				D/KL		1	value	%	%				
		140.			EXI	isting	rro	posed	(kcals/	Ash	Sulphur				
2	Details of Fuel to be	1	Carl		2.0	^	100	<i>-</i>	kg)	-					
$\frac{2}{6}$	used:	1	Coal	l 	2.6	U	29.0	5	4500	33	0.5				
-		1	Г.		150)			10,000	0.03 %	1.8 %				
			Dise	1	lit/I		670	lit/D		-0.07					
		#6-								%					
		#30ur #N#= 4	ce of (06ء	1 1—€	oth In	nport	ed & L	ocal loc	al vendor	· 				
-		#IVIOO	or tr	ans	port	tion o	t fue	to site	: By Road						
2		Power						TZ X 7 4							
7	Energy	Existii Propo	re po.	wei	aen	nand:	940.	KVA							
		Totel -	seu po	WU مامرم	er de	inand	: 200	O KVA	ł.						
		Total	powel	u	amar.	iu : 29	'4U K	VA							

		DG s	ets ·		HEAD SPACE				
				y DG sets = $2 \times 750 \text{ KV}$	'A proposed				
				onventional renewable					
		used							
2			ing: 5234.202						
8	Green Belt Development	Propo	$sed:188.0$ m^2						
			: 5422.3 m ²						
		Sr.	Components	Existing	Proposed to be installed				
		no		Stack attached to boilers with	Stack height of 35 meter will be provided				
		****		sufficient height of 35 meters.	for Boiler. Cyclone followed by				
					Bag filter will be provided for the flue gases generated due to				
					the boiler operation.				
				1) 1 X 1000 CFM – Plant 1 (For H2SO4	3 additional scrubbers will be installed.				
		1	Air	& HNO3 Fumes) 2) 1 X 800 CFM Plant 2 (For HCl &					
				SO2)					
				3) 1 X 1000 CFM – Plant 3 (For Fugitive					
				emissions) 4) 1 X Ventuari					
2 9	Details of Pollution Control Systems			Scrubber – Plant 4 (For H2SO4 &					
				HNO3 Fumes)					
				ETP Capacity: 150 CMD,	1) MEE of 125 CMD capacity for treatment of high COD effluent + RO Reject.				
			Water		2) Two Stage RO of 10m3/hr flow for treatment of				
			Water		Blowdowns & MEE condensate				
					3) Existing ETP of 150 CMD will be utilized				
					for treatment of LCOD effluent.				
			Noise	Green Belt	Acoustic enclosure for DG & development of green belt.				
			Solid	Membership with Taloja CHWTSDF	Same facility will be used.				

[
				Sr. No.	Pa	rticular	Recurring per annur (Rs.Lacs	n	Capital Cost (Rs.Lacs)		
				1	Ai	r Pollution	18		90		
				_		ontrol					
·	Ţ.,			2		ater Pollutior ontrol	ı 92		460		
3		ronmental agement plar	1 O&M	3 Noise Pollution			1 2.4		12		
0		(With break u				ontrol					
	1	getary Alloca		4		olid waste	5.0		-		
				5.		anagement nvironment	2		3		
						onitoring		!			
				6		ccupational ealth	1.6		8		
				7		eaith reen Belt	0.5		2.15		
				·		otal	121.5		575.15		
	EIA	Submitted (If	yes then								
3		nit the salient		Yes, E	ΞA	submitted on	31/03/2016	to SEAC-I			
1	featu	res)		ĺ							
	Store	age of chemic	als (infla	mmable	e/ex	kplosive/haza	rdous/toxic	substances)		
		1 ~.	Storage Physical consumpti Maximu Sourc Means of								
	Sr Name Numb Storag		- 1	Physical and	consumpti on	m Qty.	Sourc e of	Means of transportati			
	no		storag			Chemical	(in TPD)	of	suppl	on	
			es	each		compositi		storage	У		
	The same of the sa		Tanks	tank /		on		at any point of			
			tonner	tomo				time			
	4	3.5.4. 1	s	05 1/1		T * * 1	1.6.77	40	F 1	D D 1	
	2	Methanol Toluene	2	25 KI 25 KI		Liquid Liquid	16.7	40 20	Local Local	By Road By Road	
3						•		<u> </u>			
2	3	Acetone	1	25 KI		Liquid	0.33	20	Local	By Road	
	4	Xylene	1	25 KI		Liquid		20	Local	By Road	
	5	Hexane	1	25 KI	,	Liquid	0.2	20	Local	By Road	
	6	Cyclohexa ne	1	25 KI		Liquid	0.066	20	Local	By Road	
	7	HSD	1	25 KI	٠	Liquid	0.67	20	Local	By Road	
	8	Chlorine	10	900 k	g	Gas	4.5	9	Local	By Road	
	9	Sulphur dioxide	10	900 k	g Gas		5.83	9	Local	By Road	
	10	Ammonia	7	60 kg		Gas	10	4.2	Local	By Road	

"Annexure 13.1"

List of Vendors

Sr. No	Company name of Vendor	Company registered address	By product to be sold
1	Vidisha Enterprises	Unit No-8, Waman Patil Industrial Estate, Waman Patil Marg, Chembur, (Near Duke'S Soda Factory), Chembur, Mumbai, Maharashtra 400071	Spent Acid
2	Shree Pushkar petro products Ltd.	202, A Wing, Building No 3, Rahul Mittal Industrial Estate, Sir M V Road, Andheri East, Mumbai - 400059	Spent Acid
3	Basant Agro tech (I) Ltd.	A 1/3, Sea Lord, P Pethe Marg, Cuffe Parade, Cuffe Parade, Mumbai, Maharashtra 400005	Spent Acid
4	Thakkar Organics Pvt. Ltd.	201, 2nd Floor, Durga Niwas, Maharshi Karve Rd,Off Ram Maruti Road, Naupada, Thane(W) Thane, Maharashtra, India	Spent Acid
5	Mayur Chemicals	Plot No: A-724, TTC Industrial Area, MIDC Mahape, Thane Belapur Road, New Mumbai.	Mix Solvents

"Annexure	13 2"	

1					
Existing Scrubber Details					
Application	Plant 1 - NIPA For H2SO4, HNO3 Fumes	Plant 2- for HCl and Sulphur Dioxide	Plant 3 - Fugitive	Plant 3 - Acid Plant for H2SO4, HNO3 fumes	
Capacity	1000 ltr	500 ltr	1000 ltr	300 ltr	
MOC	PPFRP, Packed column	PPFRP, Packed column	PPFRP, Packed column	SS-316	
Absorption Media	Caustic Solution	Caustic Solution	Caustic Solution	Caustic Solution	
Pump	3m ³ /hr. 10m head	3m ³ /hr. 20m head	3m ³ /hr. 20m head	3m³ /hr. 20m head	
MOC of Pump	PP	PP	PVDF	PVDF	
Exhaust Blower	1000 CFM, PPFRP 3 HP motor, 75- 100mm wc	800 CFM, PPFRP 3 HP motor	1000 CFM, PVDF 3HP motor, 75- 100mm wc	Ventury scrubber	
Scrubber Size	Capacity - 70 kg/hr	Capacity - 70 kg/hr	Capacity - 70 kg/hr	Capacity - 70 kg/hr	

Packed bed - 500mm	Dia - 300 mm Height - 2.5 mtr Packed bed cum ventury - 300mm PPFRP	ı	Dia - 200 mm Height - 2.5 mtr Packed bed cum Ventury Scrubber - 300mm
			SS-316

	Name of Products	Existing MT/M	Proposed MT/M	Total MT/M
1	Sulfasalazine		8.0	8.0
2	Hydrochlorothiazide	5.0		5.0
3	Diatrizoic Acid	10.0		10.0
4	Iohexol	5.0	*** ***	5.0
5	Iopamidol	4.0		4.0
6	Iothalamic Acid	4.0		4.0
7	Sucralose	2.0		2.0
8	Metformin Hydrochloride		167.0	167.0
9	Amlodipine Besylate		3.0	3.0
10	Saccharin & its Salts		250.0	250.0
11	Docusate Sodium, its salts and suspension		67.0	67.0
Vete	rinary Products			
	Name of Products	Existing in	Proposed in	Total in
1	Albendazole	2.0		2.0
2	Chlorpheniramine	2.0		2.0
3	Rafoxanide BP (VET)	2.0		2.0
4	Levamisole Hydrochloride IP	2.0		2.0
Isopl	nthalic& Derivatives			•
	Name of Products	Existing in	Proposed in	Total in
1	5-Nitroisophthalic Acid	100.0	100.0	200.0
2	5-Nitroisophthalic Acid Dimethyl Ester	90.0	60	150.0
3	5-Nitroisophthalic Acid Monomethyl Ester	20.0		20.0
4	5-Aminoisophthalic Acid	5.0		5.0
5	5-Amino-2,4,6-TriIodoisophthalic Acid	20.0		20.0
6	Sodium-5-Nitroisophthalic Acid Monomethyl Ester	5.0		5.0
7	5-Hydroxy Isophthalic Acid	40.0		40.0
8	5- Nitro-N-Methyl isopthalamic acid	20.0		20.0
9	1,4,7,10tetraazacyclododecane-1,4,5,10- tetraacetic acid (DOTA)		6.0	6.0
10	5-Amino-2,4-6-triiodoisophthalic acid Dichloride	++++	20.0	20.0
11	5-Amino-N,N'-bis(2,3 dihydroxypropyl) 2,4,6-Triiodoisophthalamide		10.0	10.0

12	5-Acetylamino-N,N'-bis(2,3 dihydroxypropyl)-2,4,6-) has day and	10.0	10.0
	Triiodoisophthalamide			
13	5-Amino N,N'-Bis(2,3- Dihydroxypropyl)isophthalamideHCl [ABA.HCl]		150.0	150.0
14	1.5		3.3	3.3
14	(+)-O,O'-Di-p-Toluoyl-D-tartaric acid salts; resolving agents		3.3	3.3
Sulfo	onyl Amides & Chlorides		<u>l</u>	<u> </u>
	Name of Products	Existing in	Proposed in	Total in
1	2-Aminobenzesulfonamide	1.0		1.0
2	4-Carboxybenzenesulfonamide	0.5		0.5
3	5-Chloroaniline-2,4-Disulfonamide	30.0	****	30.0
	r Products	1 2 2 1 2	<u>.I </u>	
	Name of Products	Existing in	Proposed in	Total in
1	2-Amino-1,3-Propanediol (Serinol)	20.0		20.0
2	3-Amino-1,2-Propanediol (Isoserinol)	45.0	50.0	95.0
3	3-(Methylamino)-1,2-Propanediol	8.0		8.0
4	4-Sulfobenzoic Acid Potassium Salt	3.0		3.0
5	5-Cyanophthalide	2.0		2.0
6	Methyl Anthranilate		250.0	250.0
7	4-(Acetyl amino)benzoic acid-1- (dimethylamino)propane-2-ol		5.0	5.0
8	4-Nitrophenoxyamine		5.0	5.0
Inorg	ganic Chemicals			
	Name of Products	Existing	Proposed	Total in
1.	Copper Salts		10.0	10.0
	R & D Products		5.0	5.0
	Total (MT/M)	447.5	1179.3	1626.8

By products

By Products					
Sr. No	Name of By Product	Existing MT/M	Proposed MT/M	Total MT/M	
1.	Spent Mix Solvents	0.0	84.0	84.0	
2.	Spent Sulphuric Acid	129.0	129.0	258.0	
3.	Sodium Salts	45.0	74.1	119.1	
	Total	174	287.1	461.1	

3. The proposal has been considered by SEIAA in its 103rd meeting & decided to accord environmental clearance to the said project under the provisions of Environment Impact

Assessment Notification, 2006 subject to implementation of the following terms and conditions:

General Conditions for Pre-construction phase: -

- (i) This environment clearance is issued subject to proposed expansion will not entail any excess treated effluent load on the CETP other than permissible 92.7 KLD.
- (ii) No excess treated effluent will be discharged to CETP
- (iii) Project Proponent to take utmost precaution for the health and safety of the people working in the unit as also for protecting the environment.
- (iv) No additional land shall be used /acquired for any activity of the project without obtaining proper permission.
- (v) PP to take utmost precaution for the health and safety of the people working in the unit as also for protecting the environment.
- (vi) For controlling fugitive natural dust, regular sprinkling of water & wind shields at appropriate distances in vulnerable areas of the plant shall be ensured.
- (vii) Proper Housekeeping programmers shall be implemented.
- (viii) In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.
- (ix) A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set. (If applicable).
- (x) A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.
- (xi) Arrangement shall be made that effluent and storm water does not get mixed.
- (xii) Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.
- (xiii) Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.
- (xiv) The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989.
- (xv) Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.
- (xvi) Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.

- (xvii) Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.
- (xviii) The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.
- (xix) The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.
- (xx) The company shall undertake following Waste Minimization Measures:
 - Metering of quantities of active ingredients to minimize waste.
 - Reuse of by- products from the process as raw materials or as raw material substitutes in other process.
 - Maximizing Recoveries.
 - Use of automated material transfer system to minimize spillage.
- (xxi) Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured.
- (xxii) A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.
- (xxiii) Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department
- (xxiv) The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in
- (xxv) Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.
- (xxvi) A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.
- (xxvii) The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.

- (xxviii)The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.
- (xxix) The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.
- 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.
- 5. The Environment department reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.
- 6. **Validity of Environment Clearance**: The environmental clearance accorded shall be valid for a period of 7 years as per MoEF & CC Notification dated 29th April, 2015 to start of production operations.
- 7. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.
- 8. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.
- 9. Any appeal against this environmental clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1st Floor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

(S. M Gavai) Member Secretary, SEIAA.

Copy to:

- 1. Shri T. C. Benjamin, IAS (Retired), Chairman, SEAC-I, 602, PECAN, Marigold, Behind Gold Adlabs, Kalyani Nagar, Pune 411014.
- 2. Additional Secretary, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aligani, New Delhi-110003.
- 3. Member Secretary, Maharashtra Pollution Control Board, with request to display a copy of the clearance.

- 4. The CCF, Regional Office, Ministry of Environment and Forest (Regional Office, Western Region, Kendriya Paryavaran Bhavan, Link Road No- 3, E-5, Ravi-Shankar Nagar, Bhopal- 462 016). (MP).
- 5. Regional Office, MPCB, Thane.
- 6. Collector, Thane
- 7. IA- Division, Monitoring Cell, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.

)

8. Select file (TC-3)

(EC uploaded on